
Applied Naval Architecture

2nd Edition

INCLUDES

Access code to enrich learning experience with interactive e-lectures, quiz, videos and much more

APPLIED NAVAL ARCHITECTURE

2ND EDITION

TABLE OF CONTENTS

Chapter 1 Introduction to Ship

Preface

Introduction	1
1.1 Naval Architecture	2
1.2 Features of Merchant Ships	8
1.2.1 Dry Cargo Ships	8
1.2.2 Tankers	11
1.2.3 Passenger Ships	14
1.2.4 Specialized Vessels	17
1.2.5 Offshore Vessels	21
1.3 Management of High Speed Craft	25
1.3.1 Types of High-Speed Craft	25
1.3.2 Design and Construction Issues	28
1.4 Role of Warships	29
1.4.1 Types of warship	30
Summary	37
Knowledge Check	38
Review Questions	39
Beferences	40

Chapter 2 Ship Design

41

xv

1

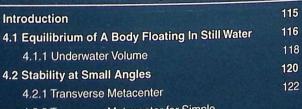
Introduction	41
2.1 The Ship Design Requirements	42
2.1.1 Some Design Features	43
2.1.2 Developing the Design	46
2.2 The Ship Design Process	48
2.3 Design of Merchant Ships	52
2.3.1 General Cargo Ships	52
2.3.2 Container Ships	54

2.3.3 Roll-on roll-off ships (Ro-Ro ships)	67
2.3.4 Bulk Cargo Carriers	57
	58
2.3.5 Passenger Ships	66
2.3.6 Tugs	68
2.4 Design of High speed Craft	
2.5 Design of Warship	69
	72
2.5.1 Enemy weapons	74
Summary	82
Knowledge Check	84
Review Questions	
	85
References	86

Chapter 3 Ship Measurements and Calculations

3.1 The Concept of Shin's bull

Introduction


en une centrepret emponem	00
3.1.1 The geometry	88
3.1.2 Representing the Hull Form	92
3.1.3 Hull Characteristics	93
3.2 Displacement and Tonnage	95
3.2.1 Deadweight	95
3.2.2 Tonnage	96
3.3 Regulation	98
3.3.1 Load Lines	98
3.4 Approximate Integration	99
3.4.1 Trapezoidal Rule	100
3.4.2 Simpson's rules	101
3.4.3 Other Simpson's rules	108
3.4.4 Tchebycheff's Rules	108
3.4.5 Polar co-ordinates	109
Summary	110
Knowledge Check	111
Review Questions	112
References	113

Chapter 4 Flotation and Stability

115

87

87

4.2.2 Transverse Metacenter for Simple

Geometrical Forms	123
4.2.3 Metacentric Diagrams	126
4.2.4 Longitudinal Stability	127
4.3 Hydrostatic Curves	129
4.3.1 Fully Submerged Bodies	130
4.3.2 Problems in Trim and Stability	131
4.3.3 The Inclining Experiment	138
4.4 Launching	142
Summary	145
Knowledge Check	146
Review Questions	147
References	148

Chapter 5 Resistance

Introduction	149	
5.1 Fluid Flow	150	
5.2 Types of Resistance		
5.2.1 Wave-Making Resistance	154	
5.2.2 Frictional Resistance	159	
5.2.3 Eddy Making Resistance	162	
5.2.4 Appendage Resistance	163	
5.2.5 Wind Resistance	163	
5.3 Calculation of Resistance	164	
5.3.1 ITTC method	165	
5.3.2 Wetted Surface Area	167	
5.4 Methodical Series	169	
5.5 Roughness	172	
5.5.1 Form Parameters and Resistance	173	
5.6 Full Scale Trials	176	
5.6.1 Effective Power	177	
Summary	180	
Knowledge Check	181	
Review Questions	182	
Reference	183	

149

185

Chapter 6 Propulsion

Introduction1856.1 General Principles of Propulsion1866.1.1 Extension of Effective Power Concept1866.2 Propulsors1876.2.1 Momentum Theory188

6.2.2 The Screw Propeller	100
6.3 Propeller Thrust and Torque	190
6.3.1 Blade Element Theory	198
6.3.2 Presentation of Propeller Data	198
6.3.3 Hull Efficiency Elements	201
6.4 Cavitation	207
6.4.1 Comparing Ship and Model under Cavitating Conditions	211 211
6.4.2 Cavitation Number	211
6.4.3 Occurrence and Effects of Cavitation	212
6.4.4 The Cavitation Tunnel	213
6.5 Other Propulsor Types	214
6.5.1 Controllable Pitch Propeller	217
6.5.2 Self-pitching Propellers	217
6.5.3 Surface Piercing Propellers	218
6.5.4 Shrouded or ducted propellers	218
6.5.5 Pump Jets	218
6.5.6 Contra-rotating propellers (CRPs)	219
6.5.7 Azimuthing propellers	219
6.5.8 Vertical axis propeller	220
6.5.9 Water jet propulsion	220
6.5.10 Paddle wheels	220
6.5.11 Wind	221
Summary	222
Knowledge check	223
Review Questions	224
References	225
Seakeeping	227
Introduction	227
7.1 Seakeeping Qualities	228
7.2 Ship Motions	229
7.2.1 Motions in Regular Waves	229
7.2.2 Presentation of Motion Data	231
7.2.3 Motions in Irregular Seas	232
7.2.4 Energy Spectra	234
7.3 Limiting Factors	236
7.4 Stabilization	238
7.4.1 Bilge keels	239
7.4.2 Passive tanks	240

240

Chapter 7

7.4.3 Active fins

241
243
244
245
246

Chapter 8 Powering Systems in Ship

247

247

Introduction	247
8.1 Ship Power System Control: A Technology	
Assessment	248
8.1.1 The Virtual Test Bed	249
8.1.2 Main Goals of the Demonstration	250
8.1.3 Definition of the Scenario	251
8.1.4 Power Generation and Supply on a Ship	253
8.1.5 Emergency Power Supply & Shaft Alternators for Ships Machinery Operation	255
8.2 Intelligent Shore-to-Ship Power Supply System	257
8.2.1 Design of the Cable Lifting Device	260
8.2.2 Structural Design of the Cable Lifting Device	261
8.2.3 Control Circuit Design of the Cable Lifting Device	264
8.2.4 Collaborative Motor Control	266
8.2.5 Modeling and Simulation	270
8.3 Onboard Integrated Marine Power Systems	272
8.3.1 Modern Marine Power Systems	274
8.3.2 Future Marine Power Systems	276
8.3.3 Maritime Microgrids	278
8.4 Ship Microgrids: System Architectures and Power Quality Aspects	280
8.4.1 Ship Power System Architectures, Loads and Sources	281
8.4.2 Energy Storage Solution for Power Quality Improvement	287
Summary	297
Knowledge Check	298
Review Questions	299
References	300

Chapter 9 Technological Impact on Ship Architecture

Architecture	303
Introduction	303
9.1 An IoT-Based Ship Berthing Method	303
Using a Set of Ultrasonic Sensors	304
9.1.1 Main Architectures of the IoT	305
9.1.2 IoT Elements and Technologies	306
9.1.3 IoT, Cloud, BigData in the Marine	309
9.1.4 Interrelated Mechanism	311
9.1.5 Problem Analysis in Ship Berthing	313
9.1.6 Proposed System	314
9.1.7 Implementation and Experiment	321
9.1.8 Consequences	322
9.2 Simultaneous Ship Detection and Orientation	OLL
Estimation	325
9.2.1 Simultaneous Detection and Angle Estimation	328
9.3 Ship Detection for Optical Remote	
Sensing Images Based on Visual Attention	334
9.3.1 Proposed Method	337
9.3.2 Experiments and Argument	342
Summary	352
Knowledge Check	353
Review Questions	354
References	355

Chapter	10 Mana	agemen	it of Shi	p Safety
	and S	ervices	j.	

Introduction	357
10.1 Ship Safety Management System	358
10.1.1 System of Formal Safety Assessment (FSA)	359
10.1.2 Identification of Risks during Lockage of LNG-Fueled Ships	361
10.1.3 Risk assessment of Lockage of LNG-fueled ships	363
10.1.4 Suggestions for Lockage Safety Management of LNG-fueled Ships	368
10.2 Ship Management Services	370
10.2.1 Shipping Operations Manager	371
10.2.2 Management of Ship's Commercial Activity	372
10.2.3 Ships Operator	375
10.2.4 Cruise Ship Pursers	376
10.2.5 Duties of a Purser on a Ship	377

357

10.3 Control Systems for the Ship in Confined and Open Waters	379
10.3.1 Training Ship	381
10.3.2 Automation of the Ship Motion Control Processes	382
10.3.3 Essential Components Arrangement of the Autonomous Training Ship	389
10.3.4 Motion Results	391
10.4 Manpower Management Service	396
10.4.1. Customer Value	
10.4.2. People Value-Shore Staff and Seafarers	
10.4.3 Training for Effective Value Creation	
10.4.4 Knowledge Management (KM) Strategies	
10.5 Future in Ship Management	404
10.5.1 Average Salary of Cruise Ship Workers	405
10.5.2 Reasons to Work on a Cruise Ship	
Summary	411
Knowledge Check	412
Review Questions	413
References	414
Index	417

INDEX

A

ahead resistance coefficient (ARC) 164 aircraft 67, 74, 76 amidships 89, 90, 91, 93, 94, 97, 107, 111 Anchor Handling Tug Supply (AHTS) 17, 21 Artificial intelligence 304 Automation system 304

B

Bernouilli's theorem 150 Boil-off gas (BOG) 362 Bonjean curves 118, 119, 133, 143 boundary layer 158, 159, 160, 163, 172 bow system 156, 157 bulbous bow 175 bulk carrier 9, 10 buoyancy force 117, 121, 125, 130

С

Cable laying vessels 17 cargo carrier 52, 84 cargo handling systems 6 civil engineer 3 Clarke transform 268 Collaborative control method 272 computer designed ships 92 Constant false alarm rate (CFAR) 325 Container ships 9, 10, 38, 54, 56, 84 Control strategy 266, 267, 269, 270, 271, 292, 293 Convolutional neural networks (CNNs) 325 Cost-benefit Assessment 361 Cruise ship industry 357, 411 Cruise ships 66

D

deadweight tonnage (DWT) 10, 13, 38 Design development 46 Diesel-Electric-propulsion 248, 297 Drilling vessels 18 Dry cargo ships 8, 38

E

effective power 176, 177, 178 Electrical angular velocity 268, 269 Electromagnetic torque 267, 268, 269 Electronic product codes (EPCs) 307 Embedded technology 304 energy spectrum 232, 234, 235

F

Feeling things 307, 352 Ferries 3, 5, 16, 38 floating body 117, 120 Formal Safety Assessment (FSA) 359 frictional resistance 153, 154, 164, 165, 166, 167, 170, 172, 173, 175, 177, 181, 182 Froude number 151, 152, 153, 154, 164

418 Applied Naval Architecture

fully submerged body 130

G

geometric 159 gravity 116, 120, 127, 128, 132, 133, 136, 137, 138, 139, 140, 142, 143, 146

H

Histogram of oriented gradients (HOG) 325 hydraulically 160 hydrodynamics 150, 179 Hydrofoil craft 69, 71 hydrostatic curves 115, 129, 131 hydrostatic forces 116, 117, 146

I

Integrated Tug Barges (ITB) 12 International Maritime Organization (IMO) 59 International safety management (ISM) 358 Internet of things (IoT) 305, 352

L

Land-based power systems 248, 297 length between perpendiculars (LBP) 88 liquefied natural gas (LNG) 11 liquefied petroleum gas (LPG) 61 Load Line Regulations 98

M

maintenance costs 44 Marine industry 247, 272 marine vessels 2, 3, 13, 17, 18, 19 mean time between failure (MTBF) 50 mean time to repair (MTR) 50 merchant ship 44, 52 Merchant vessels 8, 39, 40 methodical series 149, 169, 170, 171, 176 momentum theory 198, 200, 208

N

Naval Architect 3 Naval architecture 2, 5, 7, 303, 352 naval technology 2 Navigation 361, 363, 368, 381, 414 Network layer 305, 306, 315, 320, 321, 352 Non-linear systems 267

0

Object-based image analysis (OBIA) 325 Ocean liners 14 ore/bulk/oil (OBO) 66, 84

P

parallel middle body 157, 175 Passenger ships 66 pipelaying vessel 19, 38 presentation of motion data 231, 245 propeller efficiency 200, 203, 219 propulsor. 186, 189, 217 Pulse generator 269

Q

quasi-propulsive coefficient (QPC) 187

R

refrigeration system 54, 56 repair by replacement (RBR) 50 response amplitude operators (RAOs) 232 Reynolds' numbers 154, 159, 160, 168 rolling 229, 230, 231, 238, 239, 240, 244 Roughness 149, 172

S

Safety assessment method 359, 360 Safety management system (SMS) 358, 411 Scale-invariant feature transform (SIFT) 325 seakeeping 43, 47, 67, 69, 71, 228, 232, 236, 245 Seakeeping ability 228, 244 Seismic vessels 19 Sensor layer 305, 306, 315, 321, 352 Service-oriented architecture (SOA) 305 ship depth 90, 111 ship motions 232, 233, 238, 245 Ships 3, 8, 10, 14, 15, 26

ship's displacement 95, 112 ship's hull 87, 88, 112 Slamming 229, 236, 237, 244 Small Waterplane Area Twin Hull (SWATH) 69 Sparse representation classifier (SRC) 325 Specialized vessels 17, 38 subsurfaces 230 Support vector machine (SVM) 325

T

Tankers 3, 11, 12, 13, 38, 58, 59, 84

Tchebycheff rules 109

Transformation matrix 268

Transmission layer 305, 352

trapezoidal rule 101, 111

Tonnage 95, 96

tugboat 20

Tugs 68, 69

U

Ultra Large Crude Carrier (ULCC) 59

V

very large crude carriers (VLCC) 12

W

warships 43, 44, 49, 72, 74, 75, 77 waterline 89, 91, 93, 94, 98, 111 waterplanes parallel 126, 129 water surface 154, 181 wave-making resistance 152, 153, 154, 155, 156, 158, 166, 173, 175, 177, 181, 182 wave system 155, 156, 157, 175, 181, 232, 235, 237, 244 wetted surface area 159, 167, 170, 172, 173 wing-in-ground effect (WIG) 6

Y

yachts 3, 5, 14, 16, 28

